Crossing and Weighted Crossing Number of Near-Planar Graphs
نویسندگان
چکیده
A nonplanar graph G is near-planar if it contains an edge e such that G− e is planar. The problem of determining the crossing number of a near-planar graph is exhibited from different combinatorial viewpoints. On the one hand, we develop min-max formulas involving efficiently computable lower and upper bounds. These min-max results are the first of their kind in the study of crossing numbers and improve the approximation factor for the approximation algorithm given by Hliněný and Salazar (Graph Drawing GD’06). On the other hand, we show that it is NP-hard to compute a weighted version of the crossing number for near-planar graphs.
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملAdding One Edge to Planar Graphs Makes Crossing Number and 1-Planarity Hard
A graph is near-planar if it can be obtained from a planar graph by adding an edge. We show the surprising fact that it is NP-hard to compute the crossing number of near-planar graphs. A graph is 1-planar if it has a drawing where every edge is crossed by at most one other edge. We show that it is NP-hard to decide whether a given near-planar graph is 1-planar. The main idea in both reductions ...
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملk-planar Crossing Number of Random Graphs and Random Regular Graphs
We give an explicit extension of Spencer’s result on the biplanar crossing number of the ErdősRényi random graph G(n, p). In particular, we show that the k-planar crossing number of G(n, p) is almost surely Ω((np)). Along the same lines, we prove that for any fixed k, the k-planar crossing number of various models of random d-regular graphs is Ω((dn)) for d > c0 for some constant c0 = c0(k).
متن کاملOuterplanar Crossing Numbers, the Circular Arrangement Problem and Isoperimetric Functions
We extend the lower bound in [15] for the outerplanar crossing number (in other terminologies also called convex, circular and one-page book crossing number) to a more general setting. In this setting we can show a better lower bound for the outerplanar crossing number of hypercubes than the best lower bound for the planar crossing number. We exhibit further sequences of graphs, whose outerplan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008